Topics Covered by <u>Chemistry</u> Aptitude Test for Admission and Placement | Subject | Items | |--|--| | 1- Atomic structure for
chemical compounds and
their physical properties | Elements, compounds and mixtures - State of Matter and Properties - Chemical symbols - Predicting the number of elements in a compound - Predicting the number of atoms in a compound - Density - Periodic table - Atomic structure - Eelectronic configuration - Predicting the number of protons, neutrons and electrons - Chemical bonds - Isotopes. | | 2- Chemical equations and
naming of inorganic
compounds-chemical
calculations | Chemical formulae - Naming of inorganic compounds - lonic compounds - Calculating the formula mass - Calculating the number of moles - Calculating the number of grams - Calculating the mass of one atom - Atom and mole ratio in a compound - Calculating the number of atoms and molecules - Balancing chemical equations - Predicting the products of chemical reactions - Predicting the mole ratio from a balanced chemical equation - Predicting the type of chemical reaction - Calculating the percentage. | | 3- Chemical equilibrium for
acids, bases, salts and
oxidation - reduction
reactions | Predicting the number of ions in a formula unit - Assigning oxidation numbers - Assigning atoms changing their oxidation state in redox reactions - Acids and bases - Acid-base reactions - Calculating the [H †] and pH - Calculating the [OH †] and pOH - Acid dissociation constants (K_a) - Base dissociation constants (K_b) - Buffer solutions - Acid - base titration - Equilibrium expressions - Equilibrium constants - The solubility and solubility product (K_{sp}). | | 4- Solution chemistry | Molarity - Saturated, Unsaturated and Supersaturated solutions. | | 5- Organic compounds and functional groups | Hydrocarbon compounds - Arematic hydrocarbons - Functional groups. | ## **Details of the Test Topics** The students should be able to understand the following basic concepts in chemistry and solve problems related to items for each concept. | i) Elements, Comp | or Chemical Compo
oounds and Mixtures | • | * | |--------------------------------------|--|---|---| | anemia. Vitamin | B ₁₂ has the molecular | ary for proper health
formula, C ₆₃ H ₈₈ CoN | It is used in the treatment of
N₁₄O₁₄P. How many elements are | | present in Vitam | | | 38.74 | | A) 5 | B) 181 | C) 6 | D) 7 | | Example 1.2: W | hich of the following i | s classified as a mixt | ure? | | A) Water | B) A pure gold co | in C) Table sa | alt D) Air | | i) State of Matter | and Properties: | | | | | | substances exist as a | liquid under ordinary conditions | | of temperature ar | | | | | A) Sodium car | | B) Carbon | monoxide | | C) Mercury | | D) Hydrog | | | Example 1.4: H | ow many phases are | present in the follow | ving well-mixed system: [sand + | | salt + sugar + wa | ter + gasoline] | | | | A) 5 | B) 3 | C) 2 | D) 4 | | Example 1.5: A chemical propert | | are properties of o | xygen. Which one represents a | | A) It is a gas at | | B) It cause | s iron to form rust | | C) It can be co | | D) It freeze | | | C) it can be co | mpressed | D) ii ireeze | 28 at -219 C | | water, can be ma | | | th a density greater than that of
tich of the following properties is | | A) Specific heat | at B) Surface ter | ision C) Melting | point D) Viscosity | | ii) Chemical Symb | ools: | | | | Example 1.7: W | hich of the following e | lements is paired wit | th the wrong symbol? | | A) Silver - Ag | | B) Nitroger | n - Ni | | C) Magnesium | - Mg | D) Lithium | ı-Li | | v) Predicting the | Number of Elemen | ts in a Compound | & Predicting the Number of | | Atoms in a Com | | 12 | | | | hich of the following | oxyanions (anion co | ontaining oxygen atoms) contain | | A) Nitrate | B) Sulfate | C) Carbonate | D) Bicarbonate | | See example 1.1 | | C) Caroonale | of Diemodiate | | | | | | 30.0 mL. H | | | e placed
s are in t | | | a cynnae | |-----|---|---|--|--|------------------------------------|---|--|--|--------------------------|-----------| | | A) 60 | iner rever | B) 40 | | | 32 | | 25 | | | | | | T | V21 ¥ | | | | 02-025 | | | | | VI |) Periodic
Number of | | | Structure
r of Neutro | | | | nligurati | on-Predic | eting the | | | | | | configurati | | | | atom (M | g) in the | outermos | | | shell (last c | | | 50 | | 44 | | | | | | | A) 2s ² 2p | | B) 3s | L | C) | 2s ² 2p ¹ | D) | 3s ² 3p ¹ | | | | | Example 1 | .11: How | many ne | utrons are i | n the i | on ${}^{52}_{24}\text{Cr}^3$ | *9 | | | | | | A) 24 | | B) 28 | : | C) | 25 | D) | 27 | | | | vii | i) Chemical | Bonds: | | | | | | | | | | | | | bond for | med betwee | n amr | nonia mo | lecule (| NH ₃) and | i hydrogei | n ion (H | | | is known as | | | | | | Santana Marie Contract | A THE LEWIS CO. | | | | | A) Ionic | bond | | | | B) C | ovalent | bond | | | | | C) Coord | linate cov | alent bon | d (dative be | ond) | D) N | detallie | bond | | | | | hemical Eq | | | | | | | | | | | | | | | | | nula that | , | | | | | | A) AICl ₃ B) NaNO ₃ C) CaO D) H-SO ₄ | | Sodiun
Carbon | nium chlorio
1 nitrate
1 monoxide | | | | | | | | | A) AICl ₃
B) NaNO ₃
C) CaO
D) H ₂ SO ₄ | Algorithm (Algorithm) | Alumir
Sodiun | nium chlorio
1 nitrate
1 monoxide | | | | | | | | ii) | A) AlCl ₃
B) NaNO ₃
C) CaO
D) H ₂ SO ₄ | pounds: | Alumir
Sodiun
Carbon
Sulfuri | nium chlorio
1 nitrate
1 monoxide
e acid | ie | | | | 1.7 | 3. | | ii) | A) AICl ₃
B) NaNO ₃
C) CaO
D) H ₂ SO ₄
Ionic Com
Example | pounds:
2.2: Ho | Alumir
Sodium
Carbon
Sulfuri
w many | nium chlorio
1 nitrate
1 monoxide
e acid | ie | | | | d if you | dissolv | | ii) | A) AlCl ₃
B) NaNO ₃
C) CaO
D) H ₂ SO ₄
Ionic Com
Example
(NH ₄) ₂ [Ce(| pounds:
2.2: Ho | Alumir
Sodium
Carbon
Sulfuri
w many
w water? | nium chlorio
i nitrate
i monoxide
e acid
ions per | ie | da unit | | you fin | | dissolv | | li) | A) AICl ₃
B) NaNO ₃
C) CaO
D) H ₂ SO ₄
Ionic Com
Example | pounds:
2.2: Ho | Alumir
Sodium
Carbon
Sulfuri
w many | nium chlorio
i nitrate
i monoxide
e acid
ions per | ie | | | | | dissolv | | | A) AlCl ₃ B) NaNO ₃ C) CaO D) H ₂ SO ₄ Ionic Com Example (NH ₄) ₂ [Ce(A) 3 | pounds:
2.2: Ho
NO ₃), in | Alumir
Sodium
Carbon
Sulfuri
w many
water?
B) 9 | nium chlorid
i nitrate
i monoxide
e acid
ions per | le
form | ıla unit
C) 2 | would | you fin | | dissolv | | | A) AlCl ₃ B) NaNO ₃ C) CaO D) H ₂ SO ₄ Ionic Com Example (NH ₄) ₂ [Ce(A) 3 | pounds:
2.2: Ho
NO ₃), in | Alumir
Sodium
Carbon
Sulfuri
w many
water?
B) 9 | nium chlorid
i nitrate
i monoxide
e acid
ions per | de
formi | da unit
C) 2
SO ₄ ,7H ₂ O | would | you fin | | dissolv | | | A) AlCl ₃ B) NaNO ₃ C) CaO D) H ₂ SO ₄ Ionic Com Example (NH ₄) ₂ [Ce(A) 3 | pounds:
2.2: Ho
NO ₃) ₆] in
ig the Fo | Alumir
Sodium
Carbon
Sulfuri
w many
a water?
B) 9 | nium chlorid
i nitrate
i monoxide
e acid
ions per | de
formi | ola unit
C) 2
SO ₄ ,7H ₂ O
B) 126. | would
).
14 g/mo | you fin
D) t | | dissolv | | | A) AlCl ₃ B) NaNO ₃ C) CaO D) H ₂ SO ₄ Ionic Com Example (NH ₄) ₂ [Ce(A) 3) Calculatin Example 2 | pounds:
2.2: Ho
NO ₃) ₆] in
ig the Fo
.3: Calcu
7 g/mole | Alumir
Sodium
Carbon
Sulfuri
w many
a water?
B) 9 | nium chlorid
i nitrate
i monoxide
e acid
ions per | de
formi | da unit
C) 2
SO ₄ ,7H ₂ O | would
).
14 g/mo | you fin
D) t | | dissolv | | iii | A) AlCl ₃
B) NaNO ₃
C) CaO
D) H ₂ SO ₄
Ionic Com
Example
(NH ₄) ₂ [Ce(
A) 3
) Calculatin
Example 2
A) 120.3
C) 246.5 | pounds:
2.2: Ho
NO ₃) ₆] in
ig the Fo
.3: Calcu
7 g/mole
4 g/mole | Alumir
Sodium
Carbon
Sulfuri
w many
n water?
B) 9 | nium chlorio
n nitrate
n monoxide
c acid
ions per
ions per
ass: | de
formi | ola unit
C) 2
SO ₄ ,7H ₂ O
B) 126. | would
).
14 g/mo | you fin
D) t | | dissolv | | iii | A) AlCl ₃ B) NaNO ₃ C) CaO D) H ₂ SO ₄ Ionic Com Example (NH ₄) ₂ [Ce(A) 3) Calculatin Example 2 A) 120.3 C) 246.5) Calculatin Example 2 | pounds: 2.2: Ho NO ₃) ₆] in ig the Fo .3: Calcu 7 g/mole 4 g/mole ig the Nu .4: How | Alumir
Sodium
Carbon
Sulfuri
w many
a water?
B) 9 | nium chlorio n nitrate n monoxide c acid ions per ass: nolar mass o | ie
form
of MgS | C) 2
SO ₄ ,7H ₂ O
B) 126.
D) 222. | would). 14 g/mo 57 g/mo re in 75. | you fin
D) (
ole
ole | 6 | dissolv | | iii | A) AlCl ₃ B) NaNO ₃ C) CaO D) H ₂ SO ₄ Ionic Com Example (NH ₄) ₂ [Ce(A) 3) Calculatin Example 2 A) 120.3 C) 246.5 | pounds: 2.2: Ho NO ₃) ₆] in ig the Fo .3: Calcu 7 g/mole 4 g/mole ig the Nu .4: How | Alumir
Sodium
Carbon
Sulfuri
w many
a water?
B) 9 | nium chlorio n nitrate n monoxide c acid ions per ass: nolar mass o | ie
form
of MgS | C) 2
SO ₄ ,7H ₂ O
B) 126.
D) 222. | would). 14 g/mo 57 g/mo re in 75. | you fin
D) (
ole
ole | 6 | dissolv | | lii | A) AlCl ₃ B) NaNO ₃ C) CaO D) H ₂ SO ₄ Ionic Com Example (NH ₄) ₂ [Ce(A) 3) Calculatin Example 2 A) 120.3 C) 246.5) Calculatin Example 2 | pounds:
2.2: Ho
NO ₃) ₆] in
ing the Fo
3: Calcu
7 g/mole
4 g/mole
ing the Nu
4: How
[2S? [mole | Alumir
Sodium
Carbon
Sulfuri
w many
a water?
B) 9 | nium chlorio n nitrate n monoxide c acid ions per ass: nolar mass o Moles: les of nitrog f penicillin | ie
form
of MgS | C) 2
SO ₄ ,7H ₂ O
B) 126.
D) 222. | would 14 g/mo 57 g/mo re in 75, | you find
D) to
the
ole
O g of pe | 6 | dissolv | | iii | A) AlCl ₃ B) NaNO ₃ C) CaO D) H ₂ SO ₄ Ionic Com Example (NH ₄) ₂ [Ce(A) 3 Calculatin Example 2 A) 120.3 C) 246.5 Calculatin Example 2 C ₃₆ H ₁₈ O ₄ N A) 0.224 | pounds:
2.2: Ho
NO ₃) ₆] in
ing the Fo
.3: Calcu
7 g/mole
4 g/mole
ing the Nu
.4: How
[2S? [mole | Alumir Sodium Carbon Sulfuri w many m water? B) 9 ormula M date the many mo ar mass of B) 0 | nium chlorio n nitrate n monoxide c acid ions per ass: nolar mass o Moles: les of nitros f penicillin | form
of MgS
gen (N
= 334. | (C) 2
(C) 2
(SO ₄ ,7H ₂ O
(B) 126,
(D) 222,
(atoms a
28 g/mole
(C) 0.44 | would
14 g/mo
57 g/mo
re in 75,
c] | you find
D) to
ble
ble
O g of pe
D) t | 6
enicillin,
0.296 | dissolv | | iii | A) AlCl ₃ B) NaNO ₃ C) CaO D) H ₂ SO ₄ Ionic Com Example (NH ₄) ₂ [Ce(A) 3 Calculatin Example 2 A) 120.3 C) 246.5 Calculatin Example 2 C ₃₆ H ₁₈ O ₄ N A) 0.224 | pounds: 2.2: Ho NO ₃), in ing the Fo 3: Calcu 7 g/mole 4 g/mole 4 g/mole 4: How 2S? [mole | Alumir Sodium Carbon Sulfurion w many many mula Malate the many moar mass of B) 0 h of the fe | nium chlorio n nitrate n monoxide c acid ions per ass: nolar mass o Moles: les of nitrog f penicillin | form
of MgS
gen (N
= 334. | (a unit
C) 2
SO ₄ .7H ₂ O
B) 126.
D) 222.
) atoms at
28 g/mole
C) 0.44
2.00 mol | would 14 g/mo 57 g/mo re in 75, c] 9 | you find
D) to
ble
ble
O g of pe
D) t | 6 enicillin,
0.296 | dissolvi | | iii | A) AlCl ₃ B) NaNO ₃ C) CaO D) H ₂ SO ₄ Ionic Com Example (NH ₄) ₂ [Ce(A) 3 Calculatin Example 2 A) 120.3 C) 246.5 Calculatin Example 2 C ₁₆ H ₁₈ O ₄ N A) 0.224 Example 2 | pounds: 2.2: Ho [NO ₃) ₆] in ing the Fo [.3: Calcu 7 g/mole 4 g/mole ing the Nu [.4: How [.5? [mole].5: Whice gethane (| Alumir Sodium Carbon Sulfurion w many many mula Malate the many moar mass of B) 0 h of the for C ₂ H ₆) | nium chlorida nitrate i monoxide i monoxide cacid ions per ass: nolar mass of molar mass of penicillinates of mitrograms of mitrograms of penicillinates penicillinates of mitrograms penici | form
of MgS
gen (N
= 334. | (C) 2
(C) 2
(C) 2
(C) 304.7H ₂ O
(B) 126.
(D) 222.
(E) 310ms at 28 g/mole
(C) 0.44
(E) 0.44
(E) 2.00 mole
(B) 26.0 | would 14 g/mo 57 g/mo re in 75, e] 9 es of ca | you find the ple ble Dig Thomator ator | 6 enicillin,
0.296 | dissolv | Example 1.9: A graduated cylinder contains 50.0 mL of water. Uniform stones, each v) Density: | | v) Calculating the | Number of Grams: | | | | | | |------|--|---|-----------------------------|---------------------------------------|--|--|--| | Exar | nple 2.6: Which of the | e following substances | contains the greatest | mass of chlorine (Cl ₂)? | | | | | | A) 5.0 g Cl ₂ | | B) 0.50 mol | e Cl- | | | | | | C) 0.10 mole KCI | | D) 30.0 g M | | | | | | | | rathle services and a service service | | 27 J. Charles | | | | | | | Mass of one Atom: | | | | | | | | Example 2.7: W | hat is the mass of one | | 46.5 | | | | | | A) 1.99 x 10 ⁻²³ | ş | B) 0.502 x 1 | | | | | | | C) 0.502 x 10° | . g | D) 1.99 x 10 |) ²³ g | | | | | | vii) Atoms and Mo | le Ratio in a Compou | ind: | | | | | | | | or baking soda, NaHCC | | atio of C to O? | | | | | | A) 1:1 | B) 3:1 | C) 1:2 | D) 1:3 | | | | | | viii) Colculating th | e Number of Atoms a | and Molasulass | | | | | | | | ne mole of any elemen | | | | | | | | A) 3.011 x 10 ² | atoms | B) 6.022 x 1 | 0 ²³ atoms | | | | | | C) 1.506 x 10 ² | atoms | D) 12.04 x 1 | | | | | | | C) 1.500 x 10 | atoms | D) 12.04 A 1 | o atoms | | | | | | ix) Balancing Cher | nical Equations: | | | | | | | | | Considering the following | ng reaction: | | | | | | | | q) + CaBr ₂ (aq) | | a(NO ₃) ₂ (aq) | | | | | | the coefficient l | | Secretary Management (1997) | T WALL D | | | | | | A) I | B) 2 | C) 4 | D) 5 | | | | | | | | | id to form three products; salt, | | | | | | A) Hydrogen | A MARCHINE AND A SECOND | B) Carbon m | ionoxide | | | | | | C) Chlorine | | D) Carbon d | | | | | | | Example 2.12: 0
2NH ₃ (g) | Note Ratio from a Balaiven the balanced equi-
+ 3O ₂ (g) + 2CH ₄ (g) ratio for the mole conv | ation: → 2HCN(| $g) + 6H_2O(1)$ | | | | | | A) 3 mole O ₂ /1 | | | /2 mole HCN | | | | | | C) 2 mole HCN | | | 2/2 mole HCN | | | | | | | Type of Chemical Re- | | | | | | | | 2KClO ₃ (s | $\frac{\text{MnO}_2}{\text{Heat}} \rightarrow 2\text{KC}$ | $(s) + 3O_2(g)$ | | | | | | | A) Single displa | | B) Decompo | sition | | | | | | A) Single displacement C) Double displacement | | D) Combustion | | | | | | 3- | Chemical Fauilibri | ium for Acids Doses | Salte and Oxidation | Daduation Boostians. | | | | | | Chemical Equilibrium for Acids, Bases, Salts and Oxidation-Reduction Reactions: i) Predicting the Number of Ions in a Formula Unit: | | | | | | | | | Example 3.1: How many ions per formula unit would you find if you dissolve KClO ₃ in water? | | | | | | | | | A) 3 | B) 9 | C) 2 | D) 6 | | | | | | See example 2.2 | STEP FOR EX | 1500 E | 200 B 100 | | | | | ii) | Assigning Oxidation Numbers and Atoms changing their Oxidation State in Redox | |-----|---| | | Reactions: Example 3.2: Which of the following is an oxidation-reduction reaction? | | | A) $HC_2H_3O_2(aq) + H_2O(\ell) = H_3O'(aq) + C_2H_3O_2(aq)$ | | | B) $Zn^{2+}(aq) + H_2(g) = Zn(s) + 2H'(aq)$ | | | C) $HNO_2(aq) + H_2O(\ell)$ \longrightarrow $H_3O'(aq) + NO_2(aq)$ | Example 3.3: The oxidation number of nitrogen atom in NaNO₂ is: A) +3 B) -2 C) -3 D) +1 iii) Acids and Bases, and Acid-Base Reactions: D) $2H_2O(g)$ \longrightarrow $2H_2(g) + O_2(g)$ Example 3.4: A neutral solution can be obtained by mixing equal volumes of the same concentration of: A) HCl and NH₃ B) CH₃COOH and NaOH C) HCOOH and KOH D) HCl and NaOH iv) Calculating the [H+] and pH, and Calculating [OH] and pOH: Example 3.5: The pH is defined as: A) $$pH = -log[H^+]$$ B) $pH = log[H^+]$ C) $pH = [H^+]$ D) $pH = [H^+]^2$ v) Acid Dissociation Constants (Ka) and base Dissociation Constants (Kb): Example 3.8: Given the following equilibrium system, what is the expression of K_a? $$HC_2H_3O_2(aq) + H_2O(1)$$ \longrightarrow $C_2H_3O_2(aq) + H_3O^{\dagger}(aq)$ $$\begin{array}{lll} A) \ \ K_a = & \frac{ \left[C_2 H_3 O_2 \right] \left[H_3 O^4 \right] }{ \left[H C_2 H_3 O_2 \right] } \\ C) \ \ K_a = & \frac{ \left[C_2 H_3 O_2 \right] \left[H_3 O^4 \right] }{ \left[H C_2 H_3 O_2 \right] \left[H_2 O \right] } \\ D) \ \ K_a = & \frac{ \left[H C_2 H_3 O_2 \right] \left[H_3 O^4 \right] }{ \left[C_2 H_3 O_2 \right] \left[H_2 O \right] } \\ \end{array}$$ vi) Buffer Solutions: Example 3.9: Which of the following constitute a buffer? A) HCl and NaCl B) KOH and HCl C) NH₃ and NH₄Cl D) BaCl₂ and AgNO₃ vii) Acid-Base Titration: Example 3.10: What volume of 1.80 M of an automobile sulfuric acid. (H₂SO₄) neutralizes 42.10 cm³ of 1.90 M NaOH? A) 22.2 cm³ B) 42.1 cm³ C) 44.4 cm³ D) 39.9 cm³ | | viii) Equilibrium Expr
Example 3.11: Giv
$N_2(g) + 3H_2(g) =$ | ressions and Equilibre the following equil 2NH3(g) | ium Constants:
ibrium system, what is t | he expression of K _c ? | | | |----|---|--|---|---|--|--| | | A) $K_c = [NH_3]^2 / C$) $K_c = [N_2][H_2]$ | $[N_2] + 3[H_2]$
3/ $[NH_3]^2$ | B) $K_c = [NH_3]^2 / D$
D) $K_c = 2[NH_3] / D$ | | | | | | ix) The Solubility and
Example 3.12: The
A) $K_{sp} = 2[Ag^{+}][$
C) $K_{sp} = [2Ag^{+}][$ | solubility product cor
CrO ₄ ² '] | Constant (K_{sp}) :
astant (K_{sp}) of Ag_2CrO_4
B) $K_{sp} = 1/[Ag^*]$
D) $K_{sp} = [Ag^+]^2$ | ² [CrO ₄ ²] | | | | 4- | | t is the molarity of a so
ske 2.75 L of solution?
B) 0.873 M | olution made by dissolvi
C) 0.255 M | ng 2.40 mole of KI in D) 0.542 M | | | | 5- | Organic Compounds and Functional Groups: - Hydrocarbon Compounds, Aromatic Hydrocarbons, and Functional Groups: Example 5.1: Not all carbon containing compounds are organic compounds. Which of the following compounds is an inorganic compound? A) CH ₄ (methane) B) CH ₃ OH(methanol) C) CH ₂ Cl ₂ (dichloromethane) D) CaCO ₃ (calcium carbonate) | | | | | | | | Example 5.2: Which A) Methane | ch of the following is a
B) Ethanol | n <u>aromatic compound?</u> C) Benzene | D) Acetaldehyde | | | Example 5.3: What is the functional group the compound (-C-) in CH₃-C-CH₃? B) Hydroxyl group D) Aldehyde group A) Carbonyl group C) Carboxylic acid group